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Modeling elastic instabilities in nematic elastomers
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Liquid crystal elastomers are cross-linked polymer networks covalently bonded with liquid crystal me-
sogens. In the nematic phase, due to strong coupling between mechanical strain and orientational order, these
materials display strain-induced instabilities associated with formation and evolution of orientational domains.
Using a three-dimensional finite element elastodynamics simulation, we investigate one such instability, the
onset of stripe formation in a monodomain film stretched along an axis perpendicular to the nematic director.
In our simulation, we observe the formation of striped domains with alternating director rotation. This model
allows us to explore the fundamental physics governing dynamic mechanical response of nematic elastomers
and also provides a potentially useful computational tool for engineering device applications.

DOI: 10.1103/PhysRevE.82.051701

Liquid crystal elastomers (LCE) exhibit some of the elas-
tic properties of rubber along with the orientational order
properties of liquid crystals, displaying a variety of nematic
and smectic phases. They are composed of liquid crystal me-
sogens covalently bonded to a cross-linked polymer back-
bone [1,2]. These materials display strong coupling between
orientational order of the mesogens and mechanical deforma-
tion of the polymer network. For instance in a nematic LCE,
any change in the magnitude of the nematic order parameter
induces shape change, e.g., the isotropic-nematic phase tran-
sition induces strains of up to several hundred percent [3].

Conversely, applied strain can also drive changes in ori-
entational order, producing the fascinating phenomenon of
semisoft elasticity [4]. In a classic experiment, Kundler and
Finkelmann [5] measured the mechanical response of a mon-
odomain nematic LCE thin film stretched along an axis per-
pendicular to the nematic director. They observed a semisoft
elastic response with a pronounced plateau in the stress-
strain curve arising at a threshold stress. Accompanying this
instability they observed the formation of striped orienta-
tional domains with alternating sense of director rotation,
and a stripe width of 15 um. They repeated the experiment
with samples cut at different orientations to the director axis,
and found that the instability was absent when the angle
between the initial director and the stretch axis was less than
70°; in this geometry, instead of forming stripes, the director
rotates smoothly as a single domain.

DeSimone et al. [6] carried out numerical simulation
studies of the stripe instability using a two-dimensional finite
element elastostatic method. Each area element in the system
was considered as a composite of domains with different
orientations. This simulation model was the first to reproduce
successfully the soft elastic response of nematic elastomers,
but did not attempt to resolve the resulting microstructural
evolution. Uchida [7] carried out more detailed studies of
director evolution in nematic elastomers using a two-
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dimensional lattice model where macroscopic strain is
treated as a global variable analogous to an external field, but
did not attempt to describe the nonuniform strain and result-
ing shape evolution of the sample.

Here we explore this elastic instability in more detail by
simultaneously modeling the sample’s mechanical response,
shape evolution, and the associated microstructural evolution
as a function of strain. We use a Hamiltonian-based three-
dimensional (3D) finite element elastodynamics model with
terms that explicitly couple strain and nematic order. By re-
solving the finite element mesh down to the micron scale, we
resolve the formation of orientational domains, and because
the model is dynamic rather than static in character, we can
examine the effects of strain rate. We use the simulation to
explore the dependence of mechanical response on deforma-
tion geometry.

We model this instability in a thin film of nematic elas-
tomer which has been cross-linked in the nematic phase. Us-
ing public domain meshing software [8] we discretize the
volume of the sample into approximately 78 000 tetrahedral
elements. For each volume element we assign a local vari-
able n which defines the nematic director, and Q;;
=%S(3nln ;= 8;;) which is the associated symmetric and trace-
less nematic order tensor. The initial state is taken to be a
monodomain with n=n, in every element; this configuration
is defined as the system’s stress-free reference state. Thus the
nematic order tensor in the reference configuration Qj; is
calculated using this definition of n,,

There are many approaches to finite element simulation of
the dynamics of elastic media [9]; we make use of an elegant
Hamiltonian approach developed by Broughton et al.
[10,11], generalizing it to three dimensions and the case of
large rotations. We write the Hamiltonian of an isotropic
elastic solid as
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Here the first term represents elastic strain energy, with p
summing over volume elements. V), is the volume of element
p in the reference state. For an isotropic material the compo-
nents of the elastic stiffness tensor Cjjy,; are determined from
only two material parameters, namely, the shear and bulk
moduli [12]. As an approximation, Broughton et al. devel-
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oped this formulation using the linear strain tensor, but we
instead use the rotationally invariant Green-Lagrange strain
tensor g; -—z(u,j+u i+ ity ;), where u is the displacement
field. We note that using the linearized strain tensor would
make the Hamiltonian unphysical, as rotation of the sample
would appear to cost energy. The second term represents
kinetic energy in the lumped mass approximation [11]
whereby the mass of each element is equally distributed
among its vertices, which are the nodes of the mesh. Here i
sums over all nodes, m; is the effective mass and v; the
velocity of node i.

To account for the additional energy cost associated with
the presence of a director field, we add to the potential en-

ergy,

nemanc - E v [_ asp ) + B 2]

+y 2 (05— 0%, (2)
(p.q)

The first term describes coupling between the strain and or-
der parameter tensors using a form proposed by de Gennes
[13]. Here Q;; defines the nematic order after deformation
while Qf; defines the preferred nematic order frozen in at
cross-linking. Variables Qij, 0. i and €; are all defined in the
body frame, i.e., they are invariant under rotations in the
target space [14]. The prefactor a controls the strength of
this coupling, and de Gennes [13] argued that it is of the
same order of magnitude as the shear modulus u. The second
term describes “cross-link memory,” that is, the tendency of
the nematic director to prefer its orientation at cross-linking.
Thus there is an energy cost to rotate the director away from
its reference state, with coupling strength 8. The third term is
an energy penalty for spatial variations of the nematic direc-
tor, similar to a Frank free energy in the single elastic con-
stant approximation. The summation is carried only over
nearest neighbor elements in the mesh, as the typical domain
size is of the order of the nematic correlation length [15].

The strain tensor g; within each tetrahedral element is
calculated in two steps. We calculate the displacement u of
each node from the reference state, then perform a linear
interpolation of the displacement field within the volume el-
ement in the reference state. The resulting interpolation co-
efficients represent the derivatives u; ; needed to calculate the
components of the strain tensor. Details can be found in any
introductory text on finite element methods, e.g., [16]. At this
level of approximation, the strain is piecewise constant
within each volume element. The effective force on each
node is calculated as the negative derivative of the potential
energy with respect to node displacement.

To evolve the system forward in time, we assume the
director is in quasistatic equilibrium with the strain; that is,
the time scale for director relaxation is much faster than that
for strain evolution as observed by Urayama [17]. The first
part of each step is elastodynamics: holding Q;; in each ele-
ment constant, the equations of motion f=ma for all node
positions and velocities are integrated forward in time using
the Velocity Verlet algorithm [18], with a time step of
1078 s. In the second part of each step, we relax the nematic
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director in each element to instantaneously minimize the el-
ement’s potential energy. Because the director relaxes from a
higher energy state to a lower energy state without picking
up conjugate momentum, this is a source of anisotropic dis-
sipation. Thus in our model, as in real nematic elastomers,
strains that rotate the director cause more energy dissipation
than those applied parallel to the director [19].

To add internal damping associated with velocity gradi-
ents in the sample, we use a modified form of Kelvin dissi-
pation. In its standard form, the Kelvin dissipation force
(e.g., between two particles, or between two nodes in a finite
element mesh) is proportional to the velocity difference be-
tween them (see, e.g., [20].) This form conserves linear mo-
mentum but violates conservation of angular momentum; in-
ternal dissipation forces could create torque, which is of
course unphysical. We modified the Kelvin dissipation form
to provide for conservation of angular momentum, that is,
dissipation forces between any pair of nodes must act along
the line of sight between them, so they create no torque [21].
We also scale the dissipation force so it depends on the
effective strain rate between two nodes rather than their
absolute velocity difference. With these modifications, the
dissipation force between a pair of neighboring nodes sepa-
rated by distance d is Fi,=—5(v,=v,)-(r;=1,)75/d, with
7»=107 kg/s. 1, is a unit vector along the line of sight
between the nodes. The resulting dissipation is isotropic in
character and does not depend on the orientation of the di-
rector field.

We simulate uniaxial stretching in an initially mon-
odomain nematic elastomer film of size 1.5 mmX 0.5 mm
with a thickness of 50 wm, with shear modulus u=5.7
X 10° Pa, bulk modulus B,=2.8X 107 Pa, and parameters
a=u, B=0.3u, and y=10"" J. For convenience, the scalar
order parameter S is set to be 1. We first consider the case
where the director is initially oriented along the y axis, trans-
verse to the direction of applied strain. The sample is
clamped on two sides and the clamped regions are con-
strained to move apart laterally at a constant speed of 1
mm/s. The resulting microstructural evolution is shown in
Fig. 1. Here, color represents Jones matrix imaging of the
director field as viewed through crossed polarizers parallel to
the x and y directions; blue corresponds to a director parallel
to the polarizer or analyzer, and red corresponds to a director
at a 45° angle to either. While the simulated sample is three-
dimensional, the film’s microstructure does not vary signifi-
cantly through the thickness and can thus be visualized in
two dimensions (2D).

At a strain of 8.5%, the director field in the sample be-
comes unstable and orientational domains form, nucleating
first from the free edges of the film. Heterogeneity in the
finite element mesh serves to break the symmetry and nucle-
ate the instability. By 9% strain, the whole film is occupied
by striped orientational domains with alternating sense of
director rotation. The stripes are not uniform in width, being
slightly larger near the free edges. Near the center of the
sample, each individual stripe has a width of about 25 um,
which is of the same order of magnitude as that observed in
experiment [5]. This value is in reasonable agreement with
the theoretical estimate by Warner and Terentjev [1] who
predicted a stripe width of 7~V §L/ Vi=1/ )\1, where £ is the
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FIG. 1. (Color online) Simulation: stretching a nematic elas-
tomer film at an angle of 90° to the director. Initially a mon-
odomain, the director field evolves to form a striped microstructure.
Darkest regions have director parallel or perpendicular to the
stretching direction; brightest regions have director oriented at
*45° to the stretching direction.

nematic penetration length, L is the sample width, and \; is
the strain threshold of the instability. The stripes coarsen as
the elongation increases. Eventually this microstructure
evolves into a more disordered state with stripes at multiple
orientations. By reaching 35% strain, the stripes have van-
ished and the film is again in a monodomain state with the
director oriented with the direction of strain. Only the re-
gions near the clamped edges do not fully realign, in agree-
ment with experimental observations [5] and with the simu-
lation studies of DeSimone [6]. We will explore the
dependence of stripe width on aspect ratio and other param-
eters in future work.

The resulting stress-strain response is semisoft [14] in
character, as shown in Fig. 2. The initial elastic response is
linear, followed by an extended plateau running from about
8.5% to over 30% strain, after which there is a second linear
regime. We also measure the average director rotation
(sin*(¢p)) and observe that the thresholds for both the stress-
strain plateau and the rotation of the nematic director occur
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FIG. 2. (Color online) Engineering stress (circles) and director
rotation (squares) vs applied strain, for the system shown in Fig. 1.
Onset of director rotation and the stress-strain plateau both occur at
the same strain.

PHYSICAL REVIEW E 82, 051701 (2010)

0.12 -1
oF
® O [ ) L
0.1 m  Sin% ° _—0.8
m By
. 0.08 L L
D n® ~0.6
£ .I. ° -8
§006 = N L%
R
] o -
® - . o4
0.04 ] [ ]
m ° i
| .. "02
0.02 - L
[ )
] ... -
fee :
0 — 77 0
0 0.1 0.2 0.3 0.4 0.5
AN/A

FIG. 3. (Color online) Engineering stress (circles) and director
rotation (squares) vs applied strain, applied at an angle of 60° from
the nematic director.

at the same strain. This finding demonstrates, in agreement
with theory [1,14], that the reorientation of the system’s in-
ternal degree of freedom—namely, the nematic director—
reduces the energy cost of the deformation.

We also performed simulations for monodomain nematic
elastomer films with the initial director orientation at differ-
ent angles to the pulling direction. In Fig. 3, we plot the
film’s stress-strain response when strain is applied at an
angle of 60° from the nematic director, which shows no pla-
teau, and likewise director rotation shows no threshold be-
havior. As shown in Fig. 4, the director rotates to align with
the strain direction without forming stripes. We performed
additional simulations with the director at angles of 70° and
80° to the pulling direction and again found no stripe forma-
tion and no plateau in the stress-strain response.

We also tried varying the applied strain rate. Figure 5
compares the stress-strain response for samples strained at 1
and 5 mm/s. The higher strain rate produces a significant
stress overshoot, and stripe formation occurs at a strain of

Unstrained

FIG. 4. (Color online) Simulation: stretching a nematic elas-
tomer film at an angle of 60° to the director. Initially a mon-
odomain, the director field rotates smoothly without sharp gradients
in orientation. Darkest regions have director parallel or perpendicu-

lar to the stretching direction; brightest regions have director ori-
ented at £45° to the stretching direction.
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FIG. 5. (Color online) Dependence of the stress-strain response
on strain rate.

15%. This finding suggests that the threshold strain for the
instability depends in a significant way on strain rate.

To explore mechanical response of nematic elastomer
films in a more complex geometry, we next simulated the
radial stretching of a circular monodomain film of diameter
1 cm and thickness 100 wm, with the nematic director ori-
ented initially along the y axis, as indicated by the arrow
in Fig. 6. Boundary conditions were imposed that clamp
the sample around its circumference and stretch radially in
all directions, pulling the edge outward at constant speed.
Figure 6 shows the film at different stages of its extension,
demonstrating that the director field smoothly changes
from a monodomain to a radial configuration, with no stripe
instability. With a careful choice of the sample’s thickness,
this deformed circular sheet of nematic elastomer could be
used as a tunable spatial polarization converter as described
in [22].
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FIG. 6. (Color online) Simulation: A nematic elastomer disk is
stretched radially. The director field smoothly transforms from a
homogeneous vertically oriented monodomain to a nearly radial
configuration.

The simulations presented here were performed at far
higher strain rates, e.g., 50% per second, than those used in
typical experiments [5,23] where the material is allowed to
relax for minutes or hours between strain increments. In fu-
ture work we plan to apply our model to examine deforma-
tion of nematic elastomers at slower strain rates and as a
function of sample geometry. We will also examine the role
of initial microstructure and thermomechanical history in de-
termining mechanical response. Using the same finite ele-
ment approach, we can also test the predictions of other pro-
posed constitutive models, and model geometries of interest
for potential applications. Through this approach we hope to
bridge the divide between fundamental theory of these fasci-
nating materials and engineering design of devices.
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